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Abstract
We apply climate attribution techniques to sea surface temperature time series from five regional
North Pacific ecosystems to track the growth in human influence on ocean temperatures over the
past seven decades (1950–2022). Using Bayesian estimates of the Fraction of Attributable Risk
(FAR) and Risk Ratio (RR) derived from 23 global climate models, we show that human influence
on regional ocean temperatures could first be detected in the 1970s and grew until 2014–2020
temperatures showed overwhelming evidence of human contribution. For the entire North Pacific,
FAR and RR values show that temperatures have reached levels that were likely impossible in the
preindustrial climate, indicating that the question of attribution is already obsolete at the basin
scale. Regional results indicate the strongest evidence for human influence in the northernmost
ecosystems (Eastern Bering Sea and Gulf of Alaska), though all regions showed FAR values> 0.98
for at least one year. Extreme regional SST values that were expected every 1000–10 000 years in the
preindustrial climate are expected every 5–40 years in the current climate. We use the Gulf of
Alaska sockeye salmon fishery to show how attribution time series may be used to contextualize the
impacts of human-induced ocean warming on ecosystem services. We link negative warming
effects on sockeye fishery catches to increasing human influence on regional temperatures
(increasing FAR values), and we find that sockeye salmon migrating to sea in years with the
strongest evidence for human effects on temperature (FAR⩾ 0.98) produce catches 1.4 standard
deviations below the long-term log mean. Attribution time series may be helpful indicators for
better defining the human role in observed climate change impacts, and may thus help researchers,
managers, and stakeholders to better understand and plan for the effects of climate change.

1. Introduction

Extreme event attribution (EEA) has been important
for building recognition of the impacts of human-
induced climate change, as it provides a way to
quantify the link between human activity and impacts
such as heatwaves, fires, and floods [1–4]. EEA
provides a useful context for understanding climate
change that may be lacking from data on primary cli-
mate variables alone, such as temperature [5]. And
EEA has been proposed as a potentially valuable tool

for adaptation planning, either within the academic
community or for the broader public [5–7]. However,
extreme events that are the focus of EEA are by defini-
tion individual events, as the techniquewas developed
to answer the question of whether a particular climate
event, usually one with severe health or economic
consequences, could be ascribed to human activities.
One shortcoming of this focus on individual events
is the problem of which events to select for analysis,
which may open attribution studies to perceptions of
bias [5, 8]. And EEA does not provide a temporal
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context for the growth of human influence on the
climate. This temporal context can be critical for
effective adaptation decision-making. For instance,
incremental changes over time may create extreme
impacts on ecosystem services [9, 10], but stakehold-
ersmay havemore difficulty in recognizining the con-
sequences of incremental change than extreme events
[11, 12]. Expanding EEA into a time series setting,
allowing for statements about the changes in human
influence on a given system over time, would allow
a broader set of questions around climate change
adaptation and mitigation to be addressed.

Ocean warming has profound consequences for
fisheries production and other critical ecosystem ser-
vices globally [13, 14], and new approaches for con-
textualizing ocean warming are important for suc-
cessful adaptation planning [5, 15, 16]. For instance,
relating declining productivity of fish stocks to
increasing human influence over regional temperat-
ures may provide information about declining fish-
eries sustainability, a critical adaptation challenge for
stakeholders [17]. Here, we apply EEA techniques to
time series of sea surface temperature (SST) obser-
vations for the North Pacific basin and five regional
ecosystems during 1950–2022, rather than to an indi-
vidual extreme SST event. Our overall objective is
to use attribution time series to measure changes
in human influence on marine climate over time as
an approach for recognizing and understanding the
impacts of human-induced climate change on eco-
system services. Our specific goals are to: (1) build
attribution time series to document the evolution of
human influence on North Pacific and regional SST;
(2) evaluate changes in the expected return time for
extreme SST events (thewarmest conditions observed
to date) in historical, current, and decadal-scale
future climates as an additional approach for illus-
trating the speed and magnitude of climate change
effects in the North Pacific; and (3) demonstrate the
potential of attribution statistics for contextualizing
climate change and informing adaptation decision-
making by comparing outcomes for an ecosystem
service (fisheries catch) under different degrees of
human influence on the climate, and by providing
estimates of climate risk to that service during histor-
ical, current, and next-decade climate states.

2. Methods

2.1. Attribution time series
We use the Fraction of Attributable Risk (FAR; [18–
20]) to attribute the human contribution to observed
SST anomalies:

FAR= 1− preindustrial probability

current probability
.

The preindustrial probability is the likelihood that
a given event might occur in a counterfactual world
without human influence on the climate, while the
current probability is the likelihood for the same
event in the factual world with human influences
[21]. Using the ratio of these probabilities, FAR gives
an estimate of the proportion of risk for a class
of event (SST anomalies ⩾ observed) that can be
assigned to human influence. We also calculate the
related Risk Ratio (RR) statistic [21], the ratio of risk
for the same class of events with and without human
activities:

RR= 1/(1− FAR) .

A RR value of 10, for example, is evidence that a
given class of event is ten times more likely to occur
due to human influence on the climate.

We calculated FAR and RR values for ERSSTv5
SST observations [22] from 1950–2022 averaged
over six areas: the North Pacific basin poleward of
20◦ N, and five northeast Pacific regional ecosystems
(Eastern Bering Sea, Gulf of Alaska, British Columbia
Coast, and Northern and Southern California
Current; figure 1). Our regional focus is motiv-
ated by the scale over which fisheries are typically
managed.

We calculated FAR and RR from indi-
vidual ensemble members for 23 Coupled Model
Intercomparison Project Phase 6 (CMIP6) mod-
els ([23]; table 1), using normalized SST anomalies
relative to the pre-1950 time series (1854–1949 for
observations, 1850–1949 for CMIP6). This reference
period was selected to be long enough to summarize
a wide range of conditions related to internal variab-
ility, before the 1960s emergence of the observed
anthropogenic trend in global temperature [24].
For each SST observation, preindustrial probabilities
were estimated for each CMIP6 model as the propor-
tion of SST anomalies from preindustrial runs produ-
cing anomalies as large as or greater than the observed
SST anomaly. Present-day probabilities were calcu-
lated for each model using combined historical and
SSP5-8.5 runs. Population dynamics for exploited
fishes are affected by climate conditions at multiple
life stages [25, 26], so average conditions over several
years may be more important for fisheries yield than
annual conditions [27]. We therefore calculate FAR
for both annual and three-year running mean values
of SST.

Model bias and non-independence may make the
equal weighting of climate models suboptimal [28],
so we weighted CMIP6 models to reward model skill
and independence [29, 30]. For each model i, the
weight wi is calculated as:

2
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Figure 1. Study area: North Pacific basin and five regional ecosystems, with 1854–2022 mean sea surface temperature (SST)
plotted. EBS= Eastern Bering Sea, GOA= Gulf of Alaska, BCC= British Columbia Coast, NCC= Northern California Current,
SCC= Southern California Current.

Table 1. Shared Socioeconomic Pathways (SSP) runs used for each
of the 23 CMIP6 models in the study. Historical runs were used
for every model.

Model SSP5-8.5 SSP2-4.5

ACCESS-CM2 X X
ACCESS-ESM1-5 X X
BCC-CSM2-MR X X
CAMS-CSM1-0 X X
CanESM5-CanOE X X
CanESM5 X X
CESM2-WACCM X X
CESM2 X X
CIESM X X
CMCC-CM2-SR5 X X
CMCC-ESM2 X X
CNRM-CM6-1 X
EC-Earth3-CC X
GISS-E2-1-G X X
HadGEM3-GC31-LL X X
HadGEM3-GC31-MM X
INM-CM4-8 X X
INM-CM5-0 X X
MIROC-ES2L X X
MIROC6 X X
NorESM2-LM X X
NorESM2-MM X X
UKESM1-0-LL X X

wi =
e
− D2i

σ2
D

1+
∑M

j ̸=i e
−

S2
ij

σ2
S

,

whereDi is the distance ofmodel i to the observations
(i.e. the difference between model i and observations
in scaled units of the weighting variable), Sij is the
distance of model i to model j, M is the total num-
ber of models, and σD and σS are the shape variables;

the numerator is the skill weight and the denomin-
ator is the independence weight. Values of σD and
σS were selected using a perfect model setup (see
appendix for details). We used four weighting cri-
teria: the bias and trend in SST climatology, interan-
nual SST variability, and interannual SST autocorrel-
ation. Selection of these variables was motivated by
their status as fundamental physical properties that
are important both for FAR calculations and for bio-
logical responses. Values for each weighting variable
were scaled by the median across all 23 CMIP6 mod-
els for each region, so that each variable would carry
roughly the same importance. The four variables were
then averaged for each model-region combination to
calculate Di, the difference score for each model i.
The difference for each model pair i,j (Si,j) was cal-
culated as the mean of the inter-model differences for
the same variables, after each variable was scaled by its
median. Multi-model estimates for preindustrial and
‘present’ conditions were then generated with a bino-
mial Bayesian regression model that weighted prob-
abilities from each CMIP6 model using the normal-
izedweights (see appendix for details). To evaluate the
relationship between observations and CMIP6 out-
put using this weighting approach, we plotted ERSST
anomalies (in ˚C) with respect to the pre-1950 mean
for each region against weightedmean CMIP6 anom-
alies from the model ensemble for historical, SSP2-
4.5, and SSP5-8.5 runs, with the range of most likely
outcomes for each CMIP6 run plotted as± twice the
weighted SD.

2.2. Extreme event return times
Expected return time (the inverse of annual probabil-
ity) is an established approach for evaluating the like-
lihood of extreme climate events [31]. To evaluate

3
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the changing incidence of extreme SST events over
time, we calculated the expected return time for
the warmest SST observation in each region at a
range of North Pacific warming levels (preindustrial,
1950 to 0.5◦ warming, 0.5◦ to 1.0◦ warming, 1.0◦

to 1.5◦ warming, 1.5 ◦C to 2.0 ◦C warming). The
CMIP6 multi-model probability of extreme events
was estimated with a weighted Bayesian regression
using annual probability (proportion of annual SST
anomalies ⩾ the largest observed) as the response
variable, the North Pacific warming level as a cat-
egorical explanatory variable, and the model weights
described above.

Timing of 0.5 ◦C warming increments for the
North Pacific was estimated for observations using
a Bayesian smoothed regression fitting year (as the
response variable) to warming relative to 1854–
1949 (explanatory variable). For CMIP6 models, a
weighted regression of the same formulation was
employed to generate a multi-model estimate, using
a single weighting criterion based on skill and inde-
pendence for modeling the observed warming trend
(see appendix for detailed Methods). Warming rates
for CMIP6 were estimated separately for SSP2-4.5
and SSP5-8.5.

2.3. Contextualizing climate impacts with
attribution time series
We use the Gulf of Alaska commercial sockeye sal-
mon (Oncorhynchus nerka) fishery as a case study to
show how attribution time series can contextualize
the human role in observed climate change impacts
on ecosystem services. Gulf of Alaska sockeye sal-
mon support a commercial fishery with an average
ex-vessel value of $64.4MUSD during the last decade
[32], and are an important cultural, subsistence, and
recreational resource. Commercial harvest data were
obtained from the Alaska Department of Fish and
Game [32]. Productivity in this species (adult off-
spring per spawner) shows strong responses to ocean
temperature at multiple life history stages, such that
three-year running mean SST is a better predictor of
productivity than annual SST [25, 27].

This analysis followed four steps. First, we con-
firmed the negative relationship between ocean
warming and sockeye productivity [27] with a
Bayesian regression model relating catch to three-
year running mean SST, weighted by the average year
of ocean entry for each harvest year (see appendix
for details). We then put this negative consequence
of warming into the context of human-induced cli-
mate change by fitting a second Bayesian regression
model to FAR values corresponding to three-year
SST. Then, since FAR values fix at 1 and become
uninformative past a certain level of warming, we
used a categorical model to compare fishery harvest
for salmon entering the ocean under the strongest

evidence for anthropogenic impacts (FAR ⩾ 0.98)
with ocean entry years with more moderate evidence
for anthropogenic impacts (FAR ⩽ 0.91), with the
cutoffs for the two groups defined by a bimodal dis-
tribution in the data. Finally, we evaluated changing
climate risk for this fishery by calculating probability
density functions for three-year running mean Gulf
of Alaska SST relative to an identified sockeye salmon
critical threshold (see Results). These probabilities
were derived from CMIP6 historical/SSP5-8.5 runs
for different North Pacific warming increments as
defined for each model with Bayesian regression. We
then defined the probability density by resampling
the multi-model population of anomalies from each
warming increment, weighting each model based on
the weighting criteria described above.

The natural log of catch was used as the response
variable and the models also included an autocorrel-
ated error term to account for serial dependence in
catch.We limited analysis to catch years 1989–2022 in
order to avoid the complexity of nonstationary SST-
salmon relationships earlier in the time series [27, 33].

Bayesian models were fit using Stan 2.21.0 [34]
and R 4.1.2 [35]. For all parameters, the potential
scale reduction factor (R̂) was less than 1.01, effect-
ive sample sizes were greater than 500, and there were
no divergent transitions in the No-U-Turn-Sampler
Markov chain Monte Carlo algorithm. We evalu-
ated chain convergence and model fits graphically
(e.g. with trace plots), and via posterior predictive
checks [36].

3. Results

3.1. Attribution time series
Raw SST for CMIP6 models showed strong and vari-
able bias compared with observations (appendix).
However, weighted CMIP6 anomalies showed good
agreement with observations; the envelope of plaus-
ible historical hindcast values captured the range of
observed anomalies as expected, and recent warming
is consistent with the weighted projections (figure 2).

All five regions, plus the overall North Pacific,
have reached temperatures that can be attrib-
uted to human activities with high confidence (i.e.
FAR > 0.98). In particular, North Pacific SST has
effectively become fixed in an anthropogenic state,
with FAR ⩾ 0.99 for three-year running mean SST
since 2003, and for annual SST since 2013 (figure 3).
The last years when regional SST was at levels equally
likely with or without human influence (i.e. FAR 95%
credible intervals that include zero) are clustered in
the years following the well-described 1976/77 shift
to a positive state in the Pacific Decadal Oscillation
(table 2). All regional ecosystems showed FAR val-
ues > 0.98 for at least part of the 2014–2019 marine
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Figure 2.Modelled and observed temperature change in the North Pacific basin and five regional ecosystems: sea surface
temperature (SST) anomalies (◦C) relative to the pre-1950 mean for three CMIP6 runs (Historical, SSP2-4.5, SSP5-8.5) and
ERSSTv5 observations. CMIP6 values are weighted multi-model mean values (lines)± 2 weighted standard deviations (shaded
ribbons).

Figure 3. Attribution time series for the North Pacific Ocean and regional ecosystems: multi-model estimates of the Fraction of
Attributable Risk (FAR) for annual and three-year running mean SST with 95% credible intervals, 1950-2022. Dashed horizontal
line at FAR= 0 indicates temperatures that are equally likely with and without human-induced climate change.

heatwaves that presented unprecedented climate per-
turbations to northeast Pacific ecosystems [37–39].
However, the trend and pattern in reaching these high
levels of attributable risk varied among regions. Most
notably, FAR estimates show a north-south gradient

that is consistent with Arctic amplification of global
warming. The two northernmost ecosystems have
shown FAR > 0.5 (anomalies twice as likely due to
human influence) for three-year running mean SST
in every year since 1984 (Eastern Bering Sea) and

5
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Table 2. Timing for the final year in each region during which FAR values for SST observations at two temporal scales (annual and
three-year running mean) could not be distinguished from zero, as determined by Bayesian posteriors with 95% credible intervals that
included 0.

Region Window Final year

Eastern Bering Sea Annual 1982
Three year mean 1976

Gulf of Alaska Annual 1979
Three year mean 1981

British Columbia Coast Annual 1982
Three year mean 1980

Northern California Current Annual 1981
Three year mean 1977

Southern California Current Annual 1984
Three year mean 1971

in every year but one since 1993 (Gulf of Alaska).
The strongest evidence for anthropogenic influence
is seen in the northernmost region (Eastern Bering
Sea), which exceeded FAR values of 0.99 for three-
year runningmean SST as early as 2003/2004. Annual
SST FAR values for this system also exceeded 0.99 for
each year from 2014 through 2020. Annual SST FAR
in the Gulf of Alaska and British Columbia Coast
exceeded 0.98 for at least two years since 2015, and
these systems have experienced FAR> 0.99 for three-
year running mean SST for five or six years since
2014. Recent FAR values were lowest for the lower
latitude systems (Northern and Southern California
Current), with values > 0.99 for annual SST in only
one year (2015), and values > 0.99 for three-year
running mean SST during 2014–2017.

FAR values cannot exceed one, reducing the sens-
itivity of this metric at high levels of human influ-
ence. RR time series provide additional information
about the evolution of human influence on climate to
date: annual SST in each region has reached extreme
levels that are tens to hundreds of times more likely
due to human activities (figure 3). The effects of spa-
tial scale (basin vs. regional) and Arctic amplification
are also illustrated by RR time series. North Pacific RR
values have exceeded 105 for both annual and three-
year mean SST; Eastern Bering Sea RR values have
exceeded 104 (for three-year mean SST), while RR
values for other regions have peak values of 102–103

(figure 4).

3.2. Extreme event return times
We found a rapid decrease in expected return
times for extreme SST values, as anomalies that
were exceedingly rare have become common events
(figure 5(A)). In addition, there are important
regional differences that provide context for observed
SST extremes in the different ecosystems. The Eastern
Bering Sea has experienced the largest annual SST
anomaly to date of any of the regions we con-
sider (5.08 SD), and projected return times indic-
ate that anomalies this large should be expected

every ∼40 years in the current climate (1.0 ◦C–
1.5 ◦C warming, see below). The neighboring Gulf of
Alaska has experienced the smallest observed anom-
aly of any of the regions (2.98 SD), and anomalies
this large are expected every ∼5 years in the cur-
rent climate. Strong ecosystem and fisheries responses
have been ascribed to warm anomalies in the two
systems [39, 40], but these results suggest that stake-
holders should expect repeat events to be much
more common in the Gulf of Alaska than in the
Bering Sea.

We found good agreement between observations
and CMIP6 scenarios for the timing of 0.5 ◦C and
1.0 ◦C of warming (range of 2001–2003 and 2018–
2021, respectively). The projected timing of 1.5 ◦C
and 2.0 ◦C begins to diverge for the two SSP scen-
arios in a way that demonstrates the projected effects
of mitigation on North Pacific warming (projected
dates for SSP2-4.5 of 2039 and 2060 for 1.5 ◦C and
2.0 ◦C, respectively; and 2032 and 2044, respectively,
for SSP5-8.5; figure 5(B)).

3.3. Contextualizing climate impacts with
attribution time series
Regression of sockeye salmon catches on SST con-
firmed the documented negative response of the fish-
ery to recent warming (figure 6(A)). A compan-
ion regression of catch on FAR values indicates that
declines in sockeye harvests can also be statistically
related to the increasing evidence for human influ-
ence on Gulf of Alaska climate (figure 6(B)). FAR val-
ues for catch years 1989–2016 varied between 0.33
and 0.91, indicating unmistakable but relativelymod-
erate evidence for anthropogenic influence (SST val-
ues that are 1.5–11 times more likely because of
human activity). For catch years 2017–2022, evid-
ence for anthropogenic influence on temperature was
much stronger (FAR = 0.98–0.99, indicating tem-
peratures that were 60–190 times more likely due to
human influence). We found a decline of 1.4SD in
ln(catch) for the high-FAR years (FAR⩾ 0.98), which
corresponds to a 39% decline in raw catch relative

6
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Figure 4. Attribution time series for the North Pacific Ocean and regional ecosystems: multi-model estimates of the Risk Ratio
(RR) for annual and three-year running mean sea surface temperature (SST) with 95% credible intervals, 1950–2022.

Figure 5. Historical, current, and short-term future expectations for extreme annual SST events. (A) Expected return time for
warmest observed SST in each region in different climate states, defined by amount of North Pacific warming with respect to
1850-1949. (B) Estimated timing that different North Pacific warming levels have been or will be reached for observed data
(ERSSTv5) and two CMIP6 emissions scenarios. Plotted data are posterior means and 95% credible intervals.

to the 1989–2022 mean (figure 6(C)). The FAR val-
ues in the high-anthropogenic state (FAR ⩾ 0.98)
correspond with a critical threshold of three-year
running mean SST 2.08 SD above the pre-1950 cli-
matology. Probability densities for three-year mean
SST values at different warming increments illustrate
the rapid change in the expected incidence of tem-
peratures at or above this threshold value, and thus
an estimate of changing climate risk for this fish-
ery. Temperatures at or above the threshold were rare

to uncommon events in historical climates (0% of
three-year running mean SST values in the preindus-
trial climate, 1.4% between 1950 and 0.5 ◦C warm-
ing, 20% for 0.5 ◦C–1.0 ◦C of warming). But the crit-
ical threshold is close to the median value in the cur-
rent climate (49% of values above the threshold for
1.0 ◦C–1.5 ◦C of warming). And the critical threshold
is projected to represent cooler-than-normal condi-
tions at 1.5 ◦C–2.0 ◦C warming (80% of values at or
above the threshold; figure 6(D)).
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Figure 6. Context for warming effects on the Gulf of Alaska sockeye salmon commercial fishery. (A) Relationship between
three-year running mean SST for each catch year, centered on year of ocean entry, and log commercial catch anomalies.
(B) Relationship between the corresponding Fraction of Attributable Risk values and log commercial catch anomalies. Lines in
(A), (B) are posterior means from Bayesian regression, with 80/90/95% credible intervals. (C) Fishery production (log catch
anomaly) for catch years from fish experiencing moderate anthropogenic temperature effects at ocean entry (FAR⩽ 0.91) and
those experiencing more pronounced anthropogenic warming (FAR⩾ 0.98): full posterior distributions. (D) Probability densities
for three-year running mean SST values at different levels of North Pacific warming. Dashed vertical line indicates value of 2.08,
(the value for 2017 in panel (A)), above which negative effects of SST on sockeye catch have been observed.

4. Discussion

The temporal evolution of climate change is often
quantified with time of emergence studies, and this
approach has provided important temporal context
for adaptation and mitigation planning [41, 42]. The
climate attribution time series presented in this study
provide a complementary perspective on the evolu-
tion of human influence over North Pacific climate,
based on evaluating the growing evidence for human
impacts on temperature, rather than the emergence
of the forced trend from the window of natural vari-
ability. While previous EEA studies have attributed
post-2014 marine heatwaves in the North Pacific to
human influence [31, 43–45], our results show that

these extreme events are part of a persistent trend
of increasing human influence on North Pacific cli-
mate that extends to the 1970s or early 1980s in every
region we considered. The gradual increase in human
influence documented by our attribution time series
illustrates the ‘shifting baseline’ syndrome that may
be difficult for humans to recognize, and therefore
presents a particular adaptation challenge [11, 12].
In the time since FAR values could first be distin-
guished from zero, the proportion of risk that can be
ascribed to human activities has grown from detect-
able to overwhelming, as indicated by RR values on
the order of 101–104 at the regional scale (figure 4).
These RR values indicate that recent temperatures for
the entire North Pacific have reached levels that are
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tens of thousands of times more likely to occur due
to human activities. This result is consistent with the
view that contemporary surface temperatures have in
many cases reached levels that were impossible under
preindustrial conditions [46]. We conclude that the
question of attribution has already become obsolete
at the scale of the entire North Pacific.

Our results also show that the evidence for human
influence on North Pacific temperatures is consist-
ently stronger for three-year running mean SST than
for annual SST values. This is an expected con-
sequence of conducting attribution at longer tem-
poral scales [3, 47]. But this result also suggests an
important ecological insight that is gained from attri-
bution of observation time series rather than for indi-
vidual events. The multi-year scale tracks changes in
themean state of climatemore faithfully than annual-
scale observations that are subject to a lower signal to
noise ratio. And fish populations are typically sensit-
ive to climate atmultiple life history stages, suggesting
they are more responsive to multi-year perturbations
than shorter events [25, 27].

While attribution of extreme climate events has
progressed rapidly in recent years, attribution of
subsequent economic or ecological impacts requires
a model linking the climate event to the impact
[21]. This is notoriously difficult for highly com-
plex marine ecosystem dynamics that often frustrate
attempts for out-of-sample prediction [48]. Rather
than attempting to attribute changes to fisheries
catches using coupled biological-physical modeling,
we use a ‘system-breaking’ climate change event [21]
to answer a more tractable adaptation question: how
has the performance of this fishery changed during
higher temperatures that are overwhelmingly likely to
be the result of anthropogenic forcing? In our case
study, the system-breaking event is the 1.4 SD decline
in log-transformed sockeye salmon catch at temper-
atures corresponding to FAR ⩾ 0.98. This case study
is made possible by the long history of research estab-
lishing a causal link between SST and sockeye sal-
mon productivity [27, 33, 49, 50], which allows us to
assign causality to the correlation between FAR val-
ues and catches. We propose that using an attribu-
tion statistic as an explanatory variable in an ecosys-
tem services model, rather than SST or a heatwave
index, may provide valuable context for adaptation
decision-making [5–7].

At-sea distribution data suggest that warming
since 2014 may be approaching a tipping point at
which the envelope of preferred temperatures for
sockeye salmon will no longer be available in the Gulf
of Alaska, particularly in winter [27, 51]. Our res-
ults indicate that deleterious temperatures should be
expected as often as not in the current climate, and
that temperatures that appear necessary for healthy

catches will become rare once North Pacific warming
exceeds 1.5 ◦C. Rewards for participating in the sock-
eye fishery should therefore be expected to decline
rapidly at a time scale that is consistent with the career
span of stakeholders who are currently engaged in the
fishery. Effective forward-looking action in this situ-
ation, such as building a diverse fisheries participation
portfolio [52], is expected to produce more effective
adaptation than a wait-and-see approach [15].

Recent northeast Pacific SST extremes have been
linked to several fisheries collapses [17, 40, 53].
However, it is impossible to disentangle the roles
of internal variability and the anthropogenic forced
trend in these events using observational data alone
[54, 55]. This creates important uncertainty for stake-
holders who must evaluate the risk from the forced
trend when making adaptation decisions. In this
case, engrained mental maps that are unrealistic-
ally weighted to past conditions may be difficult
to overcome [16]. The implications of this growing
human influence on climate risk for stakeholders is
illustrated by the rapid decline in expected return
times for extreme SST anomalies (figure 5). These res-
ults provide probabilistic demonstrations of the rapid
increase in risk for events associated with fisheries
failure. Results framed in this way may be one avenue
to supporting stakeholders in discounting past exper-
ience when evaluating current climate risk [15].

Important uncertainties must be kept in mind
when evaluating our results. Most notably, global cli-
mate models were not designed for regional-scale
analysis [56]. Regional SST is highly influenced by
atmosphere-ocean interactions and circulation [57,
58], and the ability of models to project these pro-
cesses under thermodynamic forcing is difficult to
evaluate [54]. This is a limitation for most attri-
bution studies [20]. However, our estimates show
negligible uncertainty for regional FAR time series
from roughly the 1990s onwards (figure 3), indicat-
ing that model uncertainty plays little role in our con-
clusions regarding anthropogenic influence on SST
in recent decades. Still, non-linearities can produce
surprising outcomes at regional scales that may be
poorly predicted by global models [56]. As a pos-
sible example, we note our results for the Eastern
Bering Sea. Our multi-model projections show that
SST anomalies in this region more extreme than the
maximum observed through 2022 will be rare events
in the current climate. However, anomalous atmo-
sphere and ocean circulation played an important role
in 2014–2022 extreme SST values in this system [59,
60], and these anomalies could signal a transition to a
novel state that was poorly represented in our multi-
model projections [61]. In that case, our conclusions
concerning expected return times would be overly
optimistic.
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Appendix. Climate attribution time series
track the evolution of human influence on
North Pacific sea surface temperature

1. DetailedMethods
1.1. Calculating attribution statistics
Since we were interested in estimating attribution
statistics over a relatively long time series (1950–
2022) for which anthropogenic forcing is expected
to vary greatly, we could not use a single defini-
tion of ‘present’ conditions for the entire run. A
single estimate of ‘present’ conditions would overes-
timate the anthropogenic contribution at the begin-
ning of the time series, but underestimate it at the
end of the time series. However, we could not simply
average the anthropogenic risk across models for a
given span of years within the time series because
different CMIP6 models make different estimates or
projections of anthropogenic warming that do not
necessarily match empirical estimates [63]. We there-
fore define ‘present’ conditions relative to estim-
ated warming of the entire North Pacific expected
for the 15 year window centered on the year of
interest (i.e. the year of the observed ERSST anomaly

for which we are evaluating probability). We began
estimating the relevant amount of warming by fitting
a Bayesian smoothed regression to the observedmean
North Pacific SST time series in order to isolate the
warming signal from high-frequency noise. Warming
at the start and end of each 15 year window (in units
of ◦C with respect to the pre-1950 mean) was iden-
tified from the Bayesian regression model. Similar
regression models were fit to North Pacific SST out-
puts for each CMIP6 run, and a span of warming
values identical to the warming in the 15 year win-
dow centered on the observation of interest was used
to define ‘present’ conditions. The probability of a
given anomaly for ‘present’ conditions was then cal-
culated as the proportion of anomalies equal to or
greater than the observed anomaly within the relev-
ant span of North Pacific warming that correspon-
ded with the 15 year window centered on the obser-
vation year. The entire 250 year preindustrial run for
each CMIP6 model was used to define preindustrial
conditions.

1.2. Model weighting
CMIP6 model outputs for calculating FAR and RR
values were weighted with an approach that rewards
model skill and independence [29, 30]. For every
model i, the weight wi was calculated as

wi =
e
− D2i

σ2
D

1+
∑M

j ̸=i e
−

S2
ij

σ2
S

where Di is the distance of model i to the observa-
tions, Sij is the distance of model i to model j, M is
the total number of models, and σD and σS are the
shape variables. In this approach the numerator is the
skill weight and the denominator is the independence
weight.

Model weighting was based on skill and inde-
pendence for bias in climatology, and variability,
autocorrelation, and the trend in SST. In addition to
being basic descriptors of temperature variability and
change that are important for FAR calculations, each
of these weighting criteria also reflects an ecological
consideration. Bias is important because nonlinear
biological responses to temperature make the actual
temperature (i.e. in ◦C), rather than the anomaly
(normalized difference from preindustrial) import-
ant. The trend in SST describes the rate of change
in the climate. And interannual variability and auto-
correlation are important because the red noise in
SST is an important driver of fisheries variability. Bias
weights were calculated as the absolute value of the
difference in mean annual temperature between the
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Figure A1. Results of perfect model setup: proportion of ‘true’ values falling between 10th and 90th quantiles of weighted
prediction for different values of the shape parameters σD and σS. The dashed horizontal line indicates the target proportion.

model and observations, trend weights as the abso-
lute value of the difference in coefficients from linear
regression models of SST on year in CMIP6 models
and observations, and standard deviation and auto-
correlationweights as the absolute difference between
modeled and observed estimates of these quantities.

Bias, variability, and autocorrelation were calcu-
lated for 1950–2014 (the period of historical CMIP6
runs that corresponds to the highest-quality observa-
tional data), and the trend in SST was calculated for
1973–2022 (a 50 year period capturing most of the
observed anthropogenic trend). Weights were calcu-
lated separately for the entire North Pacific basin and
each of the five regions.

Model weights in this approach are highly
dependent on the value of σD. Low values of σD

can result in an overly precise estimate based on only
a few models, and large values of σD tend towards
model democracy. Model weighting results are gen-
erally less sensitive to σS. We used a perfect model
setup to tune the values of σD and σS to achieve the
desired precision in weightedmodel estimates. In this
setup, each of the 23 CMIP6 models is in turn treated
as the ‘truth’. Values of Di and Si,j are then calculated
for the remaining models. Weighted predictions are
calculated for each of the four weighting variables
(bias, trend, standard deviation, autocorrelation) at a
range of possible σD and σS values. The lowest value
of σD that results in at least 80% of ‘true’ model val-
ues falling between the 10th and 90th quantiles for
the weighted prediction is then adopted for use in the
study.

Based on the results of the perfect model setup,
we adopted a value of σS = 0.4 for all regions.
Values of σD varied between 1.16 and 1.84 for the
different regions. All regions reached the desired
threshold of 80% of ‘true’ values falling between
the 10th and 90th quantiles of weighted prediction
with these combinations of except for the Southern
California Current, which reached 79.3% (figure A1).
Combined weights (wi) calculated using these shape
parameters showed a stronger effect of skill weight
than independence weight (figure A2). Normalized
values of model weights (where a weight of one
corresponds to an unweighted model) showed the
most tendency towards model democracy for the
North Pacific and Southern California Current, and
the strongest weighting for individual models in the
British Columbia Coast (figure A3). The relation-
ship between SST observations and modeled values
by weight is plotted in figure A4.

We used a separate round of model weighting
for estimating the timing of different North Pacific
warming thresholds under SSP2-4.5 and SSP5-8.5
(figure 5(B) in the Main Text). In this instance we
only weighted models by the trend in anomalies dur-
ing 1973–2022 (root mean square error for linear
regression of observed anomalies on modeled anom-
alies). This single weighting variable reflected the goal
of this part of the analysis, which was to project
North Pacific warming. We used the same perfect
model approach for this round of weighting, with the
‘true’ climatology for two periods (2001–2015 and
2031–2045) as the targets for prediction. Following
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Figure A2. Skill weight, independence weight, and combined weight for 23 CMIP6 models in the six study regions. Models are
sorted independently by combined weight in each region.

Figure A3. Combined model weights, scaled by the mean weight for each region, such that a weight of 1 (dashed horizontal line)
is equal to the unweighted case. Models are sorted independently by weight for each region.

the results from the previous perfect model approach,
we only considered a value of σS = 0.4, and the res-
ulting plot indicated selection of a value of σD = 0.82
(figure A5). Weights calculated with these two values
of the shape parameters resulted in a greater influ-
ence of independence skill than was observed in the
model weights that were used throughout the rest of
the study (figure A6).

1.3. Sockeye salmon catch analysis
Historical commercial harvests of sockeye sal-
mon were obtained for the Chignik, Kodiak, Cook
Inlet, Prince William Sound, and Southeast Alaska
Management Areas from the Alaska Department of

Fish and Game [32]. The South Alaska Peninsula was
excluded from analysis because the majority of sock-
eye salmon harvests from that Management Area are
for fish returning to Bering Sea natal streams.

Sockeye salmon spend varying number of years in
the oceans (typically 1–5), which results in catches in
a single year being comprised of fish that entered the
ocean across multiple years. To calculate a single SST
value for each catch year, we used a weighted average
of SST values across the range of ocean entry years
comprising the catch year, where the weights were
the mean proportion of sockeye entering the ocean
in a particular year. The sockeye salmon ocean entry
proportions were calculated from age-structured
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Figure A4. Observed SST (black lines) plotted against historical / SSP5-8.5 runs for 23 CMIP6 models. Normalized combined
model weight for each model in each region is indicated by line color.

Figure A5. Results of perfect model setup for selecting the shape parameters σD for weighting CMIP6 models to hindcast and
project North Pacific warming rate (figure 5(B) in Main Text). Plotted line indicates the proportion of ‘true’ values falling
between 10th and 90th quantiles of weighted prediction for different values of σD with σS = 0.4. The dashed horizontal line
indicates the target proportion.

adult return data (48 years, return years 1967–2014)
for 15 Gulf of Alaska stocks [64]. For continuous
regressions of catch on SST and FAR (figures 6(A)
and (B) in the main text), we included year as a cov-
ariate in the model to account for serial dependence
in the data. For the categorical model of the response
of catch to high FAR values (figure 6(C) in the main

text), we used weakly informative priors for all model
parameters [65]. These included a Student-t distri-
bution (3 degrees of freedom, mean = 0, SD = 3)
for the intercept, slope, smooth standard deviation
and error standard deviation, and a normal distribu-
tion (mean = 0, SD = 0.5) for the autocorrelation
parameter.
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Figure A6. Skill weight, independence weight, and combined weight for weighting of North Pacific warming hindcasts and
projections.
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